[error handling] python generator, fit_generator를 썼을 때 loss가 변하지 않고 학습이 되지 않을 때, 시계열 데이터 학습 실수
제너레이터 구현과 상관없이 시계열 데이터의 학습 방법을 잘 몰라서 발생한 실수였다. 윈도우 사이즈가 10인경우 t ~ t+10, t+1 ~ t+11, t+2 ~ t+12 ... 이런식으로 데이터가 구성되고 가령, t ~ t+10, t+2 ~ t+12, t+5 ~ t+15, ... t+1 ~ t+11, t+3 ~ t+13, t+4 ~ t+14, ... 이런식으로 구성된다. 그런데 내가 구성한 방식은... 이런 시계열 순서를 무시하고 train/test를 먼저 분리한 후 t~t+10, t+1~t+11 ... 은 train으로 t+20~t+30, t+21~t+31 ... 은 test로 해서 겹치는 데이터가 없어진다. 즉 1초대 부터 10초대까지의 데이터는 3초대부터 13초대까지의 데이터와 겹치게 마련이고 그게..
배경 차이가 뚜렷한 이미지에서, cv2.connectedComponetsWithStats 활용하여 객체 분리하고 자르기 + efficientDet
image = cv2.imread('C:\\Users\\SGSDEV\\detection\\original\\6666.jpeg') img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, src = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY_INV) cnt, labels, stats, centroids = cv2.connectedComponentsWithStats(src) dst = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) imgs = [] for i in range(1, cnt): # 각각의 객체 정보에 들어가기 위해 반복문. 범위를 1부터 시작한 이유는 배경을 제외 (x, y, w, h, area) = s..